In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems.

نویسندگان

  • Boitumelo Semete
  • Laetitia Booysen
  • Yolandy Lemmer
  • Lonji Kalombo
  • Lebogang Katata
  • Jan Verschoor
  • Hulda S Swai
چکیده

UNLABELLED The remarkable physicochemical properties of particles in the nanometer range have been proven to address many challenges in the field of science. However, the possible toxic effects of these particles have raised some concerns. The aim of this article is to evaluate the effects of poly(lactide-co-glycolide) (PLGA) nanoparticles in vitro and in vivo compared to industrial nanoparticles of a similar size range such as zinc oxide, ferrous oxide, and fumed silica. An in vitro cytotoxicity study was conducted to assess the cell viability following exposure to PLGA nanoparticles. Viability was determined by means of a WST assay, wherein cell viability of greater than 75% was observed for both PLGA and amorphous fumed silica particles and ferrous oxide, but was significantly reduced for zinc oxide particles. In vivo toxicity assays were performed via histopathological evaluation, and no specific anatomical pathological changes or tissue damage was observed in the tissues of Balb/C mice. The extent of tissue distribution and retention following oral administration of PLGA particles was analyzed for 7 days. After 7 days, the particles remained detectable in the brain, heart, kidney, liver, lungs, and spleen. The results show that a mean percentage (40.04%) of the particles were localized in the liver, 25.97% in the kidney, and 12.86% in the brain. The lowest percentage was observed in the spleen. Thus, based on these assays, it can be concluded that the toxic effects observed with various industrial nanoparticles will not be observed with particles made of synthetic polymers such as PLGA when applied in the field of nanomedicine. Furthermore, the biodistribution of the particles warrants surface modification of the particles to avoid higher particle localization in the liver. FROM THE CLINICAL EDITOR The aim of this study was to evaluate the effects of poly(lactide-co-glycolide) (PLGA) nanoparticles in vitro and in vivo compared to industrial nanoparticles including zinc oxide, ferrous oxide, and fumed silica. The authors concluded that the toxic effects observed with various industrial nanoparticles is unlikely to be observed with particles made of PLGA. The biodistribution of these particles warrants surface modification to avoid particle accumulation in the liver.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications

The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...

متن کامل

Preparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with Gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications

The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...

متن کامل

Encapsulation of irinotecan in polymeric nanoparticles: Characterization, release kinetic and cytotoxicity evaluation

Objective(s): Irinotecan is a potent anti-cancer drug from camptothecin group which inhibits topoisomerase I. Recently, biodegradable and biocompatible polymers such as poly lactide-co-glycolides (PLGA) have been considered for the preparation of nanoparticles (NPs). Materials and Methods: In this study, irinotecan loaded PLGA NPs were fabricated by an emulsification/solvent diffusion method to...

متن کامل

Quantum chemical study of Interaction of PLGA polymeric nanoparticles as drug delivery with anti-cancer agents of thiazoline

Thiazoles derivatives are consisted in chemical compounds such as antimicrobial and anticancer medicine. Since polylactic-co-glycolic acid (PLGA) polymeric nanoparticles has been conversed about nanomedicine applications and particularly as drug delivery systems. Because of molecular self-assemblies and biodegradability of PLGA polymer, it can be used to carry anti-cancer and antimicrobial drug...

متن کامل

In vivo evaluation of the combination effect of near- infrared laser and PLGA polymer containing 5- fluorouracil – loaded Nano-graphene oxide

Introduction: Recently, nanographene oxide (NGO) is proven to be as a great candidate for drug delivery, and phototherapies cancer. Photothermal sensitivity of NGO and its optical absorption in the NIR region lead to photothermal ablation of tumors. Nevertheless, the major drawback of GO is its toxicity in biological systems, To overcome this problem, nanoscale GO prepare with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanomedicine : nanotechnology, biology, and medicine

دوره 6 5  شماره 

صفحات  -

تاریخ انتشار 2010